NVIDIA GPU
Choose Your vLLM Hosting Plans
Professional GPU VPS - A4000
- 32GB RAM
- 24 CPU Cores
- 320GB SSD
- 300Mbps Unmetered Bandwidth
- Once per 2 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: Quadro RTX A4000
- CUDA Cores: 6,144
- Tensor Cores: 192
- GPU Memory: 16GB GDDR6
- FP32 Performance: 19.2 TFLOPS
- Available for Rendering, AI/Deep Learning, Data Science, CAD/CGI/DCC.
Advanced GPU Dedicated Server - V100
- 128GB RAM
- Dual 12-Core E5-2690v3
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia V100
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
- Cost-effective for AI, deep learning, data visualization, HPC, etc
Advanced GPU Dedicated Server - A5000
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A5000
- Microarchitecture: Ampere
- CUDA Cores: 8192
- Tensor Cores: 256
- GPU Memory: 24GB GDDR6
- FP32 Performance: 27.8 TFLOPS
Enterprise GPU Dedicated Server - RTX 4090
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: GeForce RTX 4090
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - A40
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A40
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 37.48 TFLOPS
- Ideal for hosting AI image generator, deep learning, HPC, 3D Rendering, VR/AR etc.
Enterprise GPU Dedicated Server - A100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Good alternativeto A800, H100, H800, L40. Support FP64 precision computation, large-scale inference/AI training/ML.etc
Multi-GPU Dedicated Server - 2xA100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Free NVLink Included
- A Powerful Dual-GPU Solution for Demanding AI Workloads, Large-Scale Inference, ML Training.etc. A cost-effective alternative to A100 80GB and H100, delivering exceptional performance at a competitive price.
Multi-GPU Dedicated Server - 4xA100
- 512GB RAM
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 4 x Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - H100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia H100
- Microarchitecture: Hopper
- CUDA Cores: 14,592
- Tensor Cores: 456
- GPU Memory: 80GB HBM2e
- FP32 Performance: 183TFLOPS
6 Reasons to Choose our vLLM Hosting
SSD-Based Drives
Full Root/Admin Access
99.9% Uptime Guarantee
Dedicated IP
24/7/365 Technical Support
Key Features of vLLM
Use Cases
How to deploy a vLLM API server
OS: Linux
Python: 3.9 – 3.12
GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)
You can create a new Python environment using conda:
# Create a new conda environment. conda create -n vllm python=3.12 -y conda activate vllm
Or you can create a new Python environment using uv, a very fast Python environment manager. Please follow the documentation to install uv. After installing uv, you can create a new Python environment using the following command:
# (Recommended) Create a new uv environment. Use `--seed` to install `pip` and `setuptools` in the environment. uv venv vllm --python 3.12 --seed source vllm/bin/activate
You can install vLLM using either pip or uv pip:
# If you are using pip pip install vllm # If you are using uv uv pip install vllm
vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. By default, it starts the server at http://localhost:8000. You can specify the address with --host and --port arguments.
Run the following command to start the vLLM server with the Qwen2.5-1.5B-Instruct model:
vllm serve Qwen/Qwen2.5-1.5B-Instruct
For more help, please refer to the official Quickstart: https://docs.vllm.ai/en/stable/getting_started/quickstart.html
vLLM vs Ollama vs SGLang vs TGI vs Llama.cpp
Features | vLLM | Ollama | SGLang | TGI(HF) | Llama.cpp |
---|---|---|---|---|---|
Optimized for | GPU (CUDA) | CPU/GPU/M1/M2 | GPU/TPU | GPU (CUDA) | CPU/ARM |
Performance | High | Medium | High | Medium | Low |
Multi-GPU | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes | ❌ No |
Streaming | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes |
API Server | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes | ❌ No |
Memory Efficient | ✅ Yes | ✅ Yes | ✅ Yes | ❌ No | ✅ Yes |
Applicable scenarios | High-performance LLM reasoning, API deployment | Local LLM operation, lightweight reasoning | Multi-step reasoning orchestration, distributed computing | Hugging Face ecosystem API deployment | Low-end device reasoning, embedded |
FAQs of vLLM Hosting
What is vLLM?
What are the hardware requirements for hosting vLLM?
✅ GPU: NVIDIA GPU with CUDA support (e.g., A6000, A100, H100, 4090)
✅ CUDA: Version 11.8+
✅ GPU Memory: 16GB+ VRAM for small models, 80GB+ for large models (e.g., Llama-70B)
✅ Storage: SSD/NVMe recommended for fast model loading
What models does vLLM support?
✅ Meta’s LLaMA (Llama 2, Llama 3)
✅ DeepSeek, Qwen, Gemma, Mistral, Phi
✅ Code models (Code Llama, StarCoder, DeepSeek-Coder)
✅ MosaicML's MPT, Falcon, GPT-J, GPT-NeoX, and more
Can I run vLLM on CPU?
Does vLLM support multiple GPUs?
Can I fine-tune models using vLLM?
How do I optimize vLLM for better performance?
✅ Use tensor parallelism (--tensor-parallel-size) for multi-GPU
✅ Enable quantization (4-bit, 8-bit) for smaller models
✅ Run on high-memory GPUs (A100, H100, 4090, A6000)