Intel Xeon CPU
PyTorch GPU Plans & Pricing
Professional GPU Dedicated Server - RTX 2060
- 128GB RAM
- GPU: Nvidia GeForce RTX 2060
- Dual 8-Core E5-2660
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 1920
- Tensor Cores: 240
- GPU Memory: 6GB GDDR6
- FP32 Performance: 6.5 TFLOPS
Advanced GPU Dedicated Server - V100
- 128GB RAM
- GPU: Nvidia V100
- Dual 12-Core E5-2690v3
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
Advanced GPU VPS - RTX 5090
- 96GB RAM
- 32 CPU Cores
- 400GB SSD
- 500Mbps Unmetered Bandwidth
- Once per 2 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: GeForce RTX 5090
- CUDA Cores: 21,760
- Tensor Cores: 680
- GPU Memory: 32GB GDDR7
- FP32 Performance: 109.7 TFLOPS
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- GPU: Nvidia Quadro RTX A6000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Multi-GPU Dedicated Server - 3xV100
- 256GB RAM
- GPU: 3 x Nvidia V100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
Enterprise GPU Dedicated Server - A40
- 256GB RAM
- GPU: Nvidia A40
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 37.48 TFLOPS
Enterprise GPU Dedicated Server - RTX 4090
- 256GB RAM
- GPU: GeForce RTX 4090
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
Enterprise GPU Dedicated Server - RTX PRO 6000
- 256GB RAM
- GPU: Nvidia RTX PRO 6000
- Dual 24-Core Platinum 8160
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell
- CUDA Cores: 24,064
- Tensor Cores: 752
- GPU Memory: 96GB GDDR7
- FP32 Performance: 125.10 TFLOPS
Enterprise GPU Dedicated Server - A100
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Multi-GPU Dedicated Server - 4xA100
- 512GB RAM
- GPU: 4 x Nvidia A100
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - H100
- 256GB RAM
- GPU: Nvidia H100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Hopper
- CUDA Cores: 14,592
- Tensor Cores: 456
- GPU Memory: 80GB HBM2e
- FP32 Performance: 183TFLOPS
How to Install PyTorch With CUDA
Prerequisites
1. Choose a plan and place an order.
2. Install NVIDIA® CUDA® Toolkit & cuDNN.
3. Python 3.7, 3.8 or 3.9 recommended.
Installing CUDA PyTorch in 4 Steps
Sample: conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
import torch # check what version is installed print(torch.__version__) # construct a randomly initialized tensor x = torch.rand(5, 3) print(x) # check if your GPU driver and CUDA is enabled and accessible torch.cuda.is_available()
6 Reasons to Choose our PyTorch GPU Servers
SSD-Based Drives
Full Root/Admin Access
99.9% Uptime Guarantee
Dedicated IP
DDoS Protection
Key Benefits of PyTorch CUDA
Easy to Learn
Higher Developer Productivity
Accelerated Computations
Effortless Data Parallelism
Scalability
Flexibility
Applications of CUDA PyTorch
Computer Vision
Natural Language Processing
Reinforcement Learning
FAQs about PyTorch GPU
What is PyTorch?
What is CUDA?
What is PyTorch CUDA?
Is PyTorch compatible with CUDA 11.x?
What is the latest stable version of PyTorch and what CUDA does it support?
Which is better, PyTorch or TensorFlow?
PyTorch has long been the preferred deep-learning library for researchers, while TensorFlow is much more widely used in production. PyTorch's ease of use makes it convenient for fast, hacky solutions, and smaller-scale models.
Is PyTorch only for deep learning?
Should I learn PyTorch or TensorFlow in 2022?
Whether you start deep learning with PyTorch or TensorFlow, our dedicated GPU server can meet you needs.
When do I need GPUs for PyTorch?
If you're just learning PyTorch and want to play around with its different functionalities, then PyTorch without GPU is fine and your CPU in enough for that.
What are the best GPUs for PyTorch deep learning?
Feel free to choose the best plan that has the right CPU, resources, and GPUs for PyTorch.
What are the advantages of bare metal GPU for PyTorch?
DBM GPU Servers for Pytorch are all bare metal servers, so we have best GPU dedicated server for AI.