LLM Hosting,Serverless LLM and Self-hosted LLMs

LLM hosting refers to deploying and running Large Language Models (LLMs) such as DeepSeek, LLaMA, GPT, Mistral, or Gemma on infrastructure optimized for inference or fine-tuning. It can be done through cloud APIs (serverless LLM hosting), dedicated GPU servers, or self-hosted solutions. The right choice depends on workload size, latency needs, compliance requirements, and budget.

LLM Hosting on NVIDIA Data Center GPU Servers

Running Large Language Model (LLM) hosting on NVIDIA Data Center High-Performance Computing (HPC) GPU servers is a powerful and efficient approach, especially for demanding AI workloads.

Advanced GPU Dedicated Server - V100

229.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia V100
  • Dual 12-Core E5-2690v3
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Multi-GPU Dedicated Server - 3xV100

469.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Nvidia V100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Enterprise GPU Dedicated Server - A100

799.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
  • 50% off for the first month, 25% off for every renewals.

Multi-GPU Dedicated Server - 2xA100

1099.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
  • Free NVLink Included

Multi-GPU Dedicated Server - 4xA100

1899.00/mo
1mo3mo12mo24mo
Order Now
  • 512GB RAM
  • GPU: 4 x Nvidia A100
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

1559.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

2099.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

General Recommendations

  • NVIDIA H100: Optimized for high-performance LLM hosting, offering over 1 petaFLOP in FP8 precision and around 15,000 CUDA cores. It excels in low-latency scenarios and is ideal for strict service-level objectives (SLOs). The H100's 80 GB VRAM (HBM3) supports larger context windows and batching, making it suitable for massive models 1.

  • NVIDIA A100: A balanced workhorse with 40 GB or 80 GB VRAM options. It handles most LLM hosting scenarios efficiently and is widely used for its reliability and software compatibility.

  • NVIDIA Tesla V100: Remains a powerful and capable GPU for various Large Language Model (LLM) tasks, despite being based on the older Volta architecture. Compared to the newer Ampere (A100) or Hopper (H100) architectures, the V100 lacks support for FP8 precision and has lower raw performance and memory bandwidth.

LLM Hosting on GeForce RTX GPU Bare Metal Servers

Running a large language model (LLM) on a GeForce RTX GPU bare metal server is a powerful and viable option, especially if you need direct control over your hardware and want to optimize performance for specific workloads. Bare metal servers provide dedicated, physical resources without the overhead of virtualization, which is ideal for demanding tasks like LLM hosting.
Hot Sale

Basic GPU Dedicated Server - RTX 4060

107.40/mo
40% OFF Recurring (Was $179.00)
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 3072
  • Tensor Cores: 96
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 15.11 TFLOPS

Basic GPU Dedicated Server - RTX 5060

159.00/mo
1mo3mo12mo24mo
Order Now
  • 64GB RAM
  • GPU: Nvidia GeForce RTX 5060
  • 24-Core Platinum 8160
  • 120GB SSD + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 4608
  • Tensor Cores: 144
  • GPU Memory: 8GB GDDR7
  • FP32 Performance: 23.22 TFLOPS

Enterprise GPU Dedicated Server - RTX 4090

409.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS
New Arrival

Enterprise GPU Dedicated Server - RTX 5090

479.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS

General Recommendations

  • Nvidia GeForce RTX 4060 & RTX 5060 (8GB VRAM): With 8GB of VRAM, these cards are at the entry-level for serious LLM hosting. Many popular models like Mistral 7B, Gemma 7B, and Llama 3.1 8B can run well with 4-bit quantization. This allows for a good balance of performance and quality.

  • Nvidia GeForce RTX 4090 (24GB VRAM) & RTX 5090 (32GB VRAM): These are the flagship consumer GPUs and are powerhouses for LLM inference. The substantial VRAM capacity makes them capable of running medium-sized models. Both are the go-to consumer GPUs for serious local LLM inference.

LLM Hosting on Quadro RTX GPU Bare Metal Servers

Nvidia's professional RTX A-series GPUs—A4000, A5000, and A6000—are very good for LLM hosting on bare metal servers, and in some ways are better suited for professional and enterprise use cases than their consumer-grade GeForce counterparts. Their key advantages are larger VRAM capacities and enterprise-grade features like ECC memory and multi-GPU support, which are critical for reliability and scalability in a production environment.

Multi-GPU Dedicated Server - 4xRTX A6000

1199.00/mo
1mo3mo12mo24mo
Order Now
  • 512GB RAM
  • GPU: 4 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A6000

899.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Enterprise GPU Dedicated Server - RTX A6000

409.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS
Fast AI-Cheap GPU Server

Multi-GPU Dedicated Server - 3xRTX A5000

447.00/mo
36% OFF Recurring (Was $699.00)
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Quadro RTX A5000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 2xRTX A5000

439.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: 2 x Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS
Fast AI-Cheap GPU Server

Advanced GPU Dedicated Server - A5000

174.50/mo
50% OFF Recurring (Was $349.00)
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 2xRTX A4000

359.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: 2 x Nvidia RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS
Fast AI-Cheap GPU Server

Advanced GPU Dedicated Server - A4000

161.82/mo
42% OFF Recurring (Was $279.00)
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia Quadro RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

General Recommendations

  • RTX A4000 (16GB VRAM): This is a great entry point for professional LLM hosting. Its 16GB of VRAM is enough to run most 7B to 13B parameter models without any or with light quantization.

  • RTX A5000 (24GB VRAM): The A5000 is a powerful, well-balanced option. Its 24GB of VRAM is comparable to a GeForce RTX 4090, allowing it to run large models up to 30B parameters with quantization. It also supports NVLink, giving you the option to scale to 48GB of VRAM with a second card for a mid-tier multi-GPU setup.

  • RTX A6000 (48GB VRAM): This is the flagship workstation GPU and one of the best for LLM hosting outside of dedicated data center cards like the A100 or H100. With its massive 48GB of VRAM, the A6000 can run 70B parameter models with minimal or no quantization, providing maximum inference speed and accuracy. With NVLink, two A6000s can combine to a staggering 192GB of VRAM, which allows for hosting very large models or using very large context windows.

Private LLM Hosting on GPU VPS (LLM VPS)

A GPU VPS is a virtual server instance that shares the resources of a physical server, including a portion of a dedicated GPU. It's a suitable option for hosting LLMs, particularly for small-medium-scale projects, development, and testing. It offers a balance between the affordability and flexibility of cloud computing and the control of a dedicated server.

Express GPU VPS - GT730

21.00/mo
1mo3mo12mo24mo
Order Now
  • 8GB RAM
  • Dedicated GPU: GeForce GT730
  • 6 CPU Cores
  • 120GB SSD
  • 100Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/ Windows 11
  • Once per 4 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 384
  • GPU Memory: 2GB DDR3
  • FP32 Performance: 0.692 TFLOPS
Hot Sale

Express GPU VPS - K620

16.50/mo
50% OFF Recurring (Was $33.00)
1mo3mo12mo24mo
Order Now
  • 12GB RAM
  • Dedicated GPU: Quadro K620
  • 9 CPU Cores
  • 160GB SSD
  • 100Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/ Windows 11
  • Once per 4 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 384
  • GPU Memory: 2GB DDR3
  • FP32 Performance: 0.863 TFLOPS

Professional GPU VPS - A4000

129.00/mo
1mo3mo12mo24mo
Order Now
  • 32GB RAM
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • Once per 2 Weeks Backup
  • OS: Linux / Windows 10/ Windows 11
  • Dedicated GPU: Quadro RTX A4000
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS
New Arrival

Advanced GPU VPS - RTX 5090

339.00/mo
1mo3mo12mo24mo
Order Now
  • 96GB RAM
  • 32 CPU Cores
  • 400GB SSD
  • 500Mbps Unmetered Bandwidth
  • Once per 2 Weeks Backup
  • OS: Linux / Windows 10/ Windows 11
  • Dedicated GPU: GeForce RTX 5090
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32GB GDDR7
  • FP32 Performance: 109.7 TFLOPS

Serverless LLM Hosting (API-Based)

LLMaaS uses the vLLM backend framework to infer the 16-bit quantized model on Hugging Face. Users access it through an HTTPS API. No deployment is required. Use your favorite SDK to connect through the HTTPS endpoint. Each plan offers dedicated GPU access, no resource sharing.
LLMaaS

Serverless-V100*3

0.69/Hour
17% OFF (Was $0.83)
Order Now
  • OS: Linux
  • GPU: Nvidia V100
  • Architecture: Volta
  • CUDA Cores: 5,120
  • GPU Memory: 3 x 16GB HBM2
  • GPU Count: 3
  • Best for LLMs under 14B:
  • DeepSeek-R1-Distill-Qwen-14B
  • DeepSeek-R1-Distill-Llama-8B
  • DeepSeek-R1-Distill-Qwen-7B
  • Llama-3.1-8B-Instruct
  • Qwen3-14B
  • ...
LLMaaS

Serverless-A40

0.76/Hour
13% OFF (Was $0.87)
Order Now
  • OS: Linux
  • GPU: Nvidia A40
  • Architecture: Ampere
  • CUDA Cores: 10,752
  • GPU Memory: 48GB GDDR6
  • GPU Count: 1
  • Best for LLMs under 14B:
  • DeepSeek-R1-Distill-Qwen-14B
  • DeepSeek-R1-Distill-Llama-8B
  • DeepSeek-R1-Distill-Qwen-7B
  • Llama-3.1-8B-Instruct
  • Qwen3-14B
  • ...
LLMaaS

Serverless-A100-40GB

0.79/Hour
25% OFF (Was $1.05)
Order Now
  • OS: Linux
  • GPU: Nvidia A100
  • Architecture: Ampere
  • CUDA Cores: 6,912
  • GPU Memory: 40GB HBM2
  • GPU Count: 1
  • Best for LLMs under 14B:
  • DeepSeek-R1-Distill-Qwen-14B
  • DeepSeek-R1-Distill-Llama-8B
  • DeepSeek-R1-Distill-Qwen-7B
  • Llama-3.1-8B-Instruct
  • Qwen3-14B
  • Gemma-3-12B
  • ...
LLMaaS

Serverless-A100-80GB

1.69/Hour
28% OFF (Was $2.35)
Order Now
  • OS: Linux
  • GPU: Nvidia A100
  • Architecture: Ampere
  • CUDA Cores: 6,912
  • GPU Memory: 80GB HBM2e
  • GPU Count: 1
  • Best for LLMs under 32B:
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2.5-32B-Instruct
  • Qwen3-32B
  • Qwen3-14B
  • Gemma-3-12B
  • ...

Custom your LLMs Server Hosting

Have queries about our LLM hosting services? Ask away! Our team of sales experts is ready to assist and reply to you shortly.
Email *
Name
Company
Get Personalized Advice on GPU Servers
Other Questions

FAQs about LLM Hosting

Q1: What is the cheapest way to host an LLM?
Small LLMs (e.g., Mistral-7B, LLaMA-13B) can run on a single GPU VPS with 16–32GB VRAM, or even locally with quantization. For enterprise-scale models, renting GPUs (A100/H100) by the hour is often cheaper than cloud APIs.

Q2: Is serverless LLM suitable for production?
Yes, but mainly for light workloads or prototypes. For enterprise apps with strict latency and compliance needs, dedicated GPU servers are better.

Q3: Which GPUs are best for LLM hosting?

  • NVIDIA H100 – best for large-scale inference and training
  • NVIDIA A100 – widely available, balanced price-performance
  • RTX 4090/5090 & A6000 – cost-efficient for mid-sized LLMs and generative tasks

Q4: Can I host GPT-4 or Claude on my own server?
No – proprietary models like GPT-4 and Claude are only available via API. For self-hosting, you can run open-source LLMs such as LLaMA-3, Qwen-2.5, or Mistral.

Q5: How do I scale LLM inference?
Use multi-GPU parallelism, vLLM for efficient serving, and orchestration frameworks like Kubernetes or Ray to handle multiple requests concurrently.

Q6. What hardware is best for LLM hosting?

  • NVIDIA A100, H100, RTX 5090,and A6000 GPUs with 40–80 GB VRAM are optimal for large models.

Q7. How much does LLM hosting cost?

  • Serverless APIs: $0.69–$1.69 per hour
  • GPU Servers: $129–$3000 per month depending on GPU type

Q8. Can I self-host LLMs without GPUs?

  • Small models (7B–13B) can run on high-end CPUs or Mac M-series, but GPUs are strongly recommended.

Q9. What frameworks are best for LLM inference?

  • Ollama your personal AI model tool
  • vLLM for high-throughput, low-latency serving for single-turn requests
  • SGLang for complex, multi-turn conversations and structured output generation
  • TensorRT-LLM for NVIDIA GPU acceleration
  • TGI (Text Generation Inference) for Hugging Face ecosystem