18K+
3.1K+
6Year
24/7
- GPU Card Classify :
- GPU Server Price:
- GPU Use Scenario:
- GPU Memory:
- GPU Card Model:
Express GPU VPS - GT730
- 8GB RAM
- 6 CPU Cores
- 120GB SSD
- 100Mbps Unmetered Bandwidth
- Once per 4 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: GeForce GT730
- CUDA Cores: 384
- GPU Memory: 2GB DDR3
- FP32 Performance: 0.692 TFLOPS
Express GPU VPS - K620
- 12GB RAM
- 9 CPU Cores
- 160GB SSD
- 100Mbps Unmetered Bandwidth
- Once per 4 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: Quadro K620
- CUDA Cores: 384
- GPU Memory: 2GB DDR3
- FP32 Performance: 0.863 TFLOPS
Basic GPU VPS - P600
- 16GB RAM
- 12 CPU Cores
- 200GB SSD
- 200Mbps Unmetered Bandwidth
- Once per 4 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: Quadro P600
- CUDA Cores: 384
- GPU Memory: 2GB GDDR5
- FP32 Performance: 1.2 TFLOPS
Lite GPU Dedicated Server - GT710
- 16GB RAM
- Quad-Core Xeon X3440
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce GT710
- Microarchitecture: Kepler
- CUDA Cores: 192
- GPU Memory: 1GB DDR3
- FP32 Performance: 0.336 TFLOPS
Lite GPU Dedicated Server - GT730
- 16GB RAM
- Quad-Core Xeon E3-1230
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce GT730
- Microarchitecture: Kepler
- CUDA Cores: 384
- GPU Memory: 2GB DDR3
- FP32 Performance: 0.692 TFLOPS
Lite GPU Dedicated Server - K620
- 16GB RAM
- Quad-Core Xeon E3-1270v3
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro K620
- Microarchitecture: Maxwell
- CUDA Cores: 384
- GPU Memory: 2GB DDR3
- FP32 Performance: 0.863 TFLOPS
- Ideal for lightweight Android emulators, small LLMs, graphic processing, and more. Powerful than GPU VPS.
Express GPU Dedicated Server - P600
- 32GB RAM
- Quad-Core Xeon E5-2643
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro P600
- Microarchitecture: Pascal
- CUDA Cores: 384
- GPU Memory: 2GB GDDR5
- FP32 Performance: 1.2 TFLOPS
Express GPU Dedicated Server - P620
- 32GB RAM
- Eight-Core Xeon E5-2670
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro P620
- Microarchitecture: Pascal
- CUDA Cores: 512
- GPU Memory: 2GB GDDR5
- FP32 Performance: 1.5 TFLOPS
Express GPU Dedicated Server - P1000
- 32GB RAM
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro P1000
- Microarchitecture: Pascal
- CUDA Cores: 640
- GPU Memory: 4GB GDDR5
- FP32 Performance: 1.894 TFLOPS
Basic GPU Dedicated Server - GTX 1650
- 64GB RAM
- Eight-Core Xeon E5-2667v3
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce GTX 1650
- Microarchitecture: Turing
- CUDA Cores: 896
- GPU Memory: 4GB GDDR5
- FP32 Performance: 3.0 TFLOPS
Basic GPU Dedicated Server - T1000
- 64GB RAM
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro T1000
- Microarchitecture: Turing
- CUDA Cores: 896
- GPU Memory: 8GB GDDR6
- FP32 Performance: 2.5 TFLOPS
- Ideal for Light Gaming, Remote Design, Android Emulators, and Entry-Level AI Tasks, etc
Basic GPU Dedicated Server - K80
- 64GB RAM
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Tesla K80
- Microarchitecture: Turing
- CUDA Cores: 4992
- GPU Memory: 24GB GDDR5
- FP32 Performance: 8.73 TFLOPS
- Supports CUDA versions 11.4 and lower. Suitable for small to medium-sized model training, HPC, etc. Does not support the latest AI model optimizations.
Dual GPUs, 24GB GDDR5 total (12GB per GPU)
Professional GPU VPS - A4000
- 32GB RAM
- 24 CPU Cores
- 320GB SSD
- 300Mbps Unmetered Bandwidth
- Once per 2 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
- Dedicated GPU: Quadro RTX A4000
- CUDA Cores: 6,144
- Tensor Cores: 192
- GPU Memory: 16GB GDDR6
- FP32 Performance: 19.2 TFLOPS
- Available for Rendering, AI/Deep Learning, Data Science, CAD/CGI/DCC.
Basic GPU Dedicated Server - GTX 1660
- 64GB RAM
- Dual 10-Core Xeon E5-2660v2
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce GTX 1660
- Microarchitecture: Turing
- CUDA Cores: 1408
- GPU Memory: 6GB GDDR6
- FP32 Performance: 5.0 TFLOPS
Basic GPU Dedicated Server - RTX 4060
- 64GB RAM
- Eight-Core E5-2690
- 120GB SSD + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce RTX 4060
- Microarchitecture: Ada Lovelace
- CUDA Cores: 3072
- Tensor Cores: 96
- GPU Memory: 8GB GDDR6
- FP32 Performance: 15.11 TFLOPS
Basic GPU Dedicated Server - RTX 5060
- 64GB RAM
- 24-Core Platinum 8160
- 120GB SSD + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce RTX 5060
- Microarchitecture: Blackwell 2.0
- CUDA Cores: 4608
- Tensor Cores: 144
- GPU Memory: 8GB GDDR7
- FP32 Performance: 23.22 TFLOPS
Professional GPU Dedicated Server - RTX 2060
- 128GB RAM
- Dual 10-Core E5-2660v2
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce RTX 2060
- Microarchitecture: Ampere
- CUDA Cores: 1920
- Tensor Cores: 240
- GPU Memory: 6GB GDDR6
- FP32 Performance: 6.5 TFLOPS
- Powerful for Gaming, OBS Streaming, Video Editing, Android Emulators, 3D Rendering, etc
Advanced GPU Dedicated Server - RTX 2060
- 128GB RAM
- Dual 20-Core Gold 6148
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia GeForce RTX 2060
- Microarchitecture: Ampere
- CUDA Cores: 1920
- Tensor Cores: 240
- GPU Memory: 6GB GDDR6
- FP32 Performance: 6.5 TFLOPS
Professional GPU Dedicated Server - P100
- 128GB RAM
- Dual 10-Core E5-2660v2
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Tesla P100
- Microarchitecture: Pascal
- CUDA Cores: 3584
- GPU Memory: 16 GB HBM2
- FP32 Performance: 9.5 TFLOPS
- Suitable for AI, Data Modeling, High Performance Computing, etc.
Advanced GPU Dedicated Server - RTX 3060 Ti
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: GeForce RTX 3060 Ti
- Microarchitecture: Ampere
- CUDA Cores: 4864
- Tensor Cores: 152
- GPU Memory: 8GB GDDR6
- FP32 Performance: 16.2 TFLOPS
Advanced GPU Dedicated Server - A4000
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A4000
- Microarchitecture: Ampere
- CUDA Cores: 6144
- Tensor Cores: 192
- GPU Memory: 16GB GDDR6
- FP32 Performance: 19.2 TFLOPS
Advanced GPU Dedicated Server - V100
- 128GB RAM
- Dual 12-Core E5-2690v3
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia V100
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
- Cost-effective for AI, deep learning, data visualization, HPC, etc
Advanced GPU Dedicated Server - A5000
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A5000
- Microarchitecture: Ampere
- CUDA Cores: 8192
- Tensor Cores: 256
- GPU Memory: 24GB GDDR6
- FP32 Performance: 27.8 TFLOPS
Multi-GPU Dedicated Server - 2xRTX 4060
- 64GB RAM
- Eight-Core E5-2690
- 120GB SSD + 960GB SSD
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x Nvidia GeForce RTX 4060
- Microarchitecture: Ada Lovelace
- CUDA Cores: 3072
- Tensor Cores: 96
- GPU Memory: 8GB GDDR6
- FP32 Performance: 15.11 TFLOPS
Multi-GPU Dedicated Server - 2xRTX 3060 Ti
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x GeForce RTX 3060 Ti
- Microarchitecture: Ampere
- CUDA Cores: 4864
- Tensor Cores: 152
- GPU Memory: 8GB GDDR6
- FP32 Performance: 16.2 TFLOPS
Multi-GPU Dedicated Server - 2xRTX A4000
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x Nvidia RTX A4000
- Microarchitecture: Ampere
- CUDA Cores: 6144
- Tensor Cores: 192
- GPU Memory: 16GB GDDR6
- FP32 Performance: 19.2 TFLOPS
Multi-GPU Dedicated Server - 3xRTX 3060 Ti
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 3 x GeForce RTX 3060 Ti
- Microarchitecture: Ampere
- CUDA Cores: 4864
- Tensor Cores: 152
- GPU Memory: 8GB GDDR6
- FP32 Performance: 16.2 TFLOPS
Enterprise GPU Dedicated Server - RTX 4090
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: GeForce RTX 4090
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - A40
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A40
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 37.48 TFLOPS
- Ideal for hosting AI image generator, deep learning, HPC, 3D Rendering, VR/AR etc.
Multi-GPU Dedicated Server - 2xRTX A5000
- 128GB RAM
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x Quadro RTX A5000
- Microarchitecture: Ampere
- CUDA Cores: 8192
- Tensor Cores: 256
- GPU Memory: 24GB GDDR6
- FP32 Performance: 27.8 TFLOPS
Multi-GPU Dedicated Server - 3xV100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 3 x Nvidia V100
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
- Expertise in deep learning and AI workloads with more tensor cores
Multi-GPU Dedicated Server - 3xRTX A5000
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 3 x Quadro RTX A5000
- Microarchitecture: Ampere
- CUDA Cores: 8192
- Tensor Cores: 256
- GPU Memory: 24GB GDDR6
- FP32 Performance: 27.8 TFLOPS
Enterprise GPU Dedicated Server - A100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Good alternativeto A800, H100, H800, L40. Support FP64 precision computation, large-scale inference/AI training/ML.etc
Multi-GPU Dedicated Server- 2xRTX 4090
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x GeForce RTX 4090
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
Multi-GPU Dedicated Server - 3xRTX A6000
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 3 x Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Multi-GPU Dedicated Server- 2xRTX 5090
- 256GB RAM
- Dual Gold 6148
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 2 x GeForce RTX 5090
- Microarchitecture: Ada Lovelace
- CUDA Cores: 20,480
- Tensor Cores: 680
- GPU Memory: 32 GB GDDR7
- FP32 Performance: 109.7 TFLOPS
Multi-GPU Dedicated Server - 2xA100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Free NVLink Included
- A Powerful Dual-GPU Solution for Demanding AI Workloads, Large-Scale Inference, ML Training.etc. A cost-effective alternative to A100 80GB and H100, delivering exceptional performance at a competitive price.
Multi-GPU Dedicated Server - 4xRTX A6000
- 512GB RAM
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 4 x Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Multi-GPU Dedicated Server - 4xA100
- 512GB RAM
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 4 x Nvidia A100
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - H100
- 256GB RAM
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- GPU: Nvidia H100
- Microarchitecture: Hopper
- CUDA Cores: 14,592
- Tensor Cores: 456
- GPU Memory: 80GB HBM2e
- FP32 Performance: 183TFLOPS
Multi-GPU Dedicated Server - 8xV100
- 512GB RAM
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 8 x Nvidia Tesla V100
- Microarchitecture: Volta
- CUDA Cores: 5,120
- Tensor Cores: 640
- GPU Memory: 16GB HBM2
- FP32 Performance: 14 TFLOPS
Multi-GPU Dedicated Server - 8xRTX A6000
- 512GB RAM
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
- GPU: 8 x Quadro RTX A6000
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Benefits of Using Our GPU Hosting
Instant Availability
Scalability and Flexibility
Reduced Maintenance
Why Choose Us?
What Do We Use GPU Hosting For?
Machine Learning and AI
Scientific Simulations
Video Rendering and Transcoding
Gaming and Virtual Reality
OBS Streaming
Android Emulators
User Case Studies
Background
Ellery is an AI researcher working on training deep learning models for image classification tasks. She requires high-performance computing resources with GPU capabilities to train and optimize her AI models.
Challenges
Need for powerful servers with multiple GPUs to accelerate the training process and handle large datasets.
Requirement for reliable and responsive technical support to troubleshoot issues and optimize model training algorithms.
Desire for cost-effective hosting solutions to minimize expenses while maximizing computing power.
Solution
Ellery chose GPU Mart for its dedicated GPU servers optimized for AI model training. With GPU Mart's state-of-the-art hardware and expert technical support, she could efficiently train and optimize her deep learning models for image classification tasks. The cost-effective pricing of GPU Mart's hosting solutions allowed her to maximize her computing budget without compromising performance.
Outcome
Ellery's AI research projects progressed rapidly with GPU Mart's high-performance servers. She achieved significant improvements in model accuracy and training efficiency, thanks to GPU Mart's reliable infrastructure and responsive technical support. With GPU Mart's scalable hosting solutions, Ellery could easily adjust server resources to meet changing research requirements and accommodate growing datasets.
FAQs of GPU Dedicated Server Hosting
What is hosting with GPU?
What is GPU Dedicated Server?
Compared with CPU-based servers, GPU servers are usually much faster for tasks that can be processed in parallel across multiple cores. This is because GPUs have much more cores than CPUs, which makes them very suitable for decomposing into many small computing tasks that can be executed at the same time. GPU dedicated servers can be purchased or leased from various hosting providers. They differ in GPU type, GPU quantity, available memory and storage. These servers can be managed remotely, allowing users to access their computing resources from anywhere through Internet connections.
What is dedicated server with GPU Rental?
Unlike virtualized GPU instances, dedicated servers with GPU rental offer users full access to the physical hardware, providing more control and customization options. Users can install their own software and configure the server to meet their specific requirements. Additionally, dedicated servers with GPU rental can offer more consistent performance and higher throughput compared to shared resources. When renting a dedicated server with GPU, users can typically choose from a range of specifications, including the type and number of GPUs, the amount of memory and storage, and the processing power of the CPU. The cost of the service will depend on the specifications selected and the duration of the rental.
How do I choose the right GPU instance for my needs?
Can I use a GPU dedicated server for streaming or running Android emulators?
What are some common GPUs used in hosting environments?
Why put a GPU in a server?
Compared to traditional central processing units (CPUs), GPUs are more efficient at handling compute-intensive workloads because they can perform multiple calculations simultaneously. This is due to the fact that GPUs have many more cores than CPUs, which allows them to process data much faster and in parallel.
By adding a GPU to a server, you can accelerate compute-intensive applications and reduce processing times, leading to improved performance, reduced latency, and increased efficiency. This is particularly important for applications that require real-time processing, such as video rendering, transcoding, and streaming, or for tasks that involve large datasets, such as machine learning and data analytics.
How to get a free trial for GPU server?
1. Choose a plan and click 'Order Now'.
2. Enter ‘24-hour free trial’ in the notes section and click “Check Out”.
3. Click 'Submit Trial Request' at the top right corner, and complete your personal information as instructed; no payment is required.
Once we receive your trial request, we’ll send you the login details within 30 minutes to 2 hours. If your request cannot be approved, you will be notified via email.